Новые агротехнологии для Арктической зоны
В лаборатории искусственного климата научного центра "Агротехнологии будущего" РГАУ-МСХА имени К. А. Тимирязева реализуют флагманский проект <i>"Новые агротехнологии для Арктической зоны"</i>. Для выращивания овощей и зелени в сложных климатических условиях создали умные сити-фермы — вертикальные теплицы с датчиками освещения, температуры и влажности. Это мобильные модульные системы замкнутого цикла. Им найдется место и в удаленных воинских гарнизонах, и в поселках вахтовиков, на полярных станциях, буровых платформах, в подъездах жилых домов и даже на подводной лодке.<br>
<br>
В виде контейнеров их можно доставлять морем в арктические порты. Установленные рядом с населенными пунктами, они способны круглогодично обеспечивать местных жителей свежими овощами, ягодами, зеленью. Причем получится гораздо дешевле, чем сейчас, когда привозят на самолетах.<br>
<br>
<i>"Это позволит приблизить салатно-зеленую продукцию к потребителю и повысить качество жизни людей в отдаленных регионах"</i>, говорит заведующий кафедрой физиологии растений РГАУ-МСХА имени К. А. Тимирязева профессор <b>Иван Тараканов</b>. <i>"Такие агротехнологии востребованы не только на Крайнем Севере, но и на Юге, например, на засушливом Аравийском полуострове. Там слишком жарко и много солнечной радиации, а это плохо для растений"</i>. <br>
<br>
В лаборатории — в подвальном помещении без солнечного света — ученые выращивают салат, петрушку, рукколу, базилик, томаты, ягоды. В вертикальных теплицах можно культивировать любые виды зелени, плодов и овощей. И по вкусу, содержанию полезных веществ они не уступают натуральным.<br>
<aside><br>
</aside> <i>"В закрытых модулях с искусственным облучением — технологией светокультуры — мы создаем оптимальные условия, добиваемся высокой продуктивности и управляем качеством урожая"</i>, — подчеркивает профессор.<br>
<br>
Раньше в теплицах применяли в основном натриевые лампы высокого давления. Теперь — светодиоды.<br>
<br>
<i>"Благодаря этому мы корректируем спектр света, меняем его: рассаде даем одно, взрослым растениям — другое, перед сбором урожая добавляем ультрафиолет. Так мы воздействуем на накопление биомассы, биосинтез целевых функциональных соединений"</i>, — объясняет ученый.<br>
<br>
Например, в эксперименте с солодкой — лекарственным растением, из корня которого получают препарат для лечения кашля, — только за счет коррекции света вдвое увеличили содержание главного полезного вещества — глицирризина.<aside><br>
</aside>
Меняя соотношение синего и красного, можно ускорять или замедлять фотосинтез, формирование биомассы. А оптимизируя плотность потока фотонов и суточный уровень освещения — управлять скоростью созревания плодов. В результате создали, в частности, ультраскороспелые томаты. И никакой химии!<br>
<br>
<i>"Светодиодные облучатели — уникальный инструмент, — отмечает профессор. — Благодаря им мы разрабатываем подходящие для каждого вида световые рецепты. У светодиодов большой срок службы и малая теплоотдача, они не перегревают растения. При этом расход электроэнергии на килограмм зеленой массы у них в два раза меньше, чем у натриевых ламп высокого давления"</i>.<br>
<br>
Сити-фермы оснащены гиперспектральными и RGB-камерами, а также тепловизорами. Цифровые камеры регистрируют суточные ритмы растений и их реакцию на изменение освещенности, спектра света, тепловизоры регистрируют ИК-излучение и измеряют температуру листьев.<aside><br>
</aside> <i>"Температура меняется в зависимости от влагообеспеченности, освещенности, энергии, поступающей на единицу площади, — говорит Тараканов. — Это очень важный параметр. По нему мы оцениваем скорость испарения и подбираем оптимальный водный режим"</i>.<br>
<br>
"Смена дня и ночи" на сити-фермах происходит не по часам, а так, как лучше для растений. То же самое с подкормкой и поливом. Всем управляет роботизированная система: отслеживает основные физиологические характеристики растений на протяжении всего продукционного цикла, вносит необходимые коррективы в микроклимат теплицы.<br>
<br>
Большинство приборов и узлов автоматизированного комплекса — российского производства. Только светодиодные облучатели китайские. В промышленном варианте автономных модулей их заменят на отечественные.<br>
<br>
Разработчики умных сити-ферм особенно гордятся программным обеспечением, созданным в сотрудничестве с коллегами из других российских институтов. Аналогов этому ПО нет. Все данные с датчиков поступают в компьютер, кодируются и затем используются для машинного обучения. Конечная цель — цифровая сити-ферма под управлением искусственного интеллекта.<br>
<aside><br>
</aside> <i>"Суть в том, чтобы люди без специальных знаний и навыков могли выращивать овощи, ягоды, зелень"</i>, — уточняет инженер-исследователь лаборатории искусственного климата <b>Иван Чуксин</b>.<br>
<br>
В планах — менять вкус плодов, исходя из индивидуальных предпочтений.<br>
<br>
<i>"Нас очень интересует проблема персонализированного питания"</i>, добавляет Чуксин. <i>"Варьируя спектр света, можно вырастить продукцию, максимально подходящую конкретному человеку. Это касается и диетических, и даже лечебных рекомендаций"</i>.<br>
<br>
В лаборатории уже провели успешные опыты по культивированию стевии. Соединения, получаемые из экстракта этого растения, — стевиозиды — в 250-300 раз слаще сахарозы, но безвредны для диабетиков. На очереди — эксперименты с различными ягодами и лекарственными растениями.<br>
<br>
<i>"Это товары с высокой добавленной стоимостью, и их производство на автономных сити-фермах экономически оправданно"</i>, — утверждает профессор Тараканов.<br>
<br>
А еще ученые думают, что в Арктике будет выгодно выращивать семенной картофель. В лаборатории реализуют проект по получению семенных мини-клубней методом аэропоники в условиях закрытых систем с регулируемыми освещением, питанием и микроклиматом.<aside><br>
</aside>
Родина картофеля — высокогорные районы Южной Америки. Для максимальной продуктивности ему нужны относительно низкие температуры и много света.<br>
<br>
<i>"Для этого необходимо постоянно охлаждать помещение и поддерживать освещение, а это огромные энергозатраты. Поэтому семенной клубень очень дорогой"</i>, поясняет Чуксин. <i>"Мы подсчитали, и оказалось, что в Арктике, где бесплатный холод и много энергоносителей, выйдет дешевле"</i>.<br>
<br>
<i>"Урожайность по нашей технологии достигает ста и более клубней с одного растения. Остается построить вблизи портов Северного морского пути умные фермы и развозить семенной картофель по всему миру"</i>, — заключает ученый.<br>
<br>
Похоже, Арктика действительно может стать новым аграрным регионом России, "второй целиной". Звучит неожиданно, но факты говорят сами за себя.<br>
<br>
Источник: <a href="https://ria.ru/20230727/arktika-1886379796.html"><span style="color: #00aeef;">РИА-Новости</span></a><br>
Ученые из Петрозаводска, Москвы и Санкт-Петербурга совершили совместную экспедицию в Белое море
<div>
Ученые из Петрозаводска, Москвы и Санкт-Петербурга совершили совместную экспедицию в Белое море, чтобы исследовать гидрофизические и биогеохимические параметры: температуру, соленость, содержание фитопланктона, биогенных элементов и нефтепродуктов. Особое внимание уделили устьям рек. Именно в этих зонах можно отследить вещества, в том числе загрязнители, попадающие в море с территории водосбора.<br>
<br>
Экспедиция на научно-исследовательском судне "Эколог" проходила с 18 по 29 июня. Основные работы проводились в рамках темы государственного задания "Комплексные исследования Белого моря в интересах развития Арктической зоны РФ". В рейсе принимали участие сотрудники различных лабораторий Института водных проблем Севера (ИВПС) и Института биологии КарНЦ РАН, Московского государственного университета им. М.В. Ломоносова и Санкт-Петербургского филиала Института океанологии им. П.П. Ширшова.<br>
<br>
<i>"Все специалисты в той или иной степени работают над заявленной темой. Нас, прежде всего, интересовали гидрофизические показатели и содержание биогенных элементов, тяжелых металлов и нефтепродуктов в морской воде, тема океанологов связана с внутренними волнами, коллеги из МГУ изучают распределение фитопланктона и его видовой состав. Все эти темы органично друг друга дополняют, и мы делимся данными. Также для нас была важна отработка методик по взаимодействию различных групп специалистов: биологов, химиков, гидрологов. Только комплексные работы могут ответить на ряд поставленных задач, и поэтому необходимо эффективно сотрудничать, чтобы результат был более ценным для науки"</i>, – отметил начальник экспедиции, руководитель лаборатории географии и гидрологии ИВПС КарНЦ РАН <b>Алексей Толстиков.</b><br>
<br>
Для того, чтобы вовремя отследить происходящие в море изменения, антропогенного или климатического характера, важно проводить наблюдения регулярно и на одних и тех же станциях. Особое внимание ученые уделяют устьям рек, где происходит смешение речной и морской воды. Здесь можно обнаружить вещества, попадающие с водосбора – территории, с которой все поверхностные и грунтовые воды стекают в море.<br>
<br>
<i>"Все, что идет по рекам с водосбора, в том числе биогенные и загрязняющие вещества, так или иначе попадает в море. Устьевая область – это своеобразный фильтр, а ее состояние – показатель экологической ситуации на реке и прибрежной части моря. Любые изменения в этих зонах говорят о процессах как природных, так и антропогенных"</i>, – пояснил ученый.<br>
<br>
В течение пяти лет карельские специалисты наблюдают за летними и зимними показателями в устье реки Кемь. В этом году в ходе экспедиции исследователям также удалось провести работы в устьях рек Нижний Выг и Онега. Последняя, самая крупная река Онежского залива, особенно важна в контексте экспедиции: ученые работали в этой области 15 лет назад и намерены возобновить исследования.<br>
<br>
Все измерения выполнялись как в фазу прилива, так и на отливе. Помимо устьевых областей, ученые выполнили разрез через весь Онежский залив. При таких работах измерения проводятся последовательно на различных станциях по ходу судна. При этом также определялись температура, электропроводность, содержание хлорофилла «а», видовой состав фитопланктона, биогенные элементы, нефтепродукты и на некоторых станциях – тяжелые металлы.<br>
<br>
На каждой локации ученые устанавливали многочасовые автономные станции, для этого с борта судна вывешивали CTD-зонды для регистрации температуры и солености.<br>
<br>
Сейчас данные, полученные в ходе экспедиции, находятся в процессе обработки в лабораториях Москвы, Санкт-Петербурга и Петрозаводска. Некоторые пробы специалисты успели обработать на судне. В частности, в устье реки Кемь наблюдается увеличение концентрации биогенных элементов и нефтепродуктов в отдельных участках, что говорит об антропогенном загрязнении. Ситуация пока не критична, но требует наблюдения.<br>
<br>
<i>"Любые изменения в окружающей среде так или иначе скажутся на экосистемах всего водоема, поэтому важно контролировать ситуацию ежегодно"</i>, – подчеркнул Алексей Толстиков.<br>
<br>
Так, данные многолетних наблюдений, полученные в Институте водных проблем Севера КарНЦ РАН в ходе экспедиций, математического моделирования и с помощью спутников, позволяют говорить о процессах потепления. В частности, ученые следят за временем становления и разрушения льда. Сегодня можно констатировать: лед на Белом море за 20-летний период стал образовываться позже, а разрушаться раньше. Это прямое свидетельство изменения климата.
</div>
<br>
В следующем году ученые планируют продолжить исследования, а также провести работы в проливе Восточная Соловецкая Салма, разделяющем Соловки и Онежский берег, а также в Бассейне Белого моря.<br>
<br>
Источник: <a target="_blank" href="http://www.krc.karelia.ru/news.php?id=5168&plang=r"><span style="color: #00aeef;">Карельский научный центр РАН</span></a><br>
Машинное обучение поможет создать долговечный бетон для Российской Арктики
<div>
Учёные Сибирского федерального университета разработали уникальную модель, основанную на машинном обучении, которая позволяет оптимизировать состав бетонных смесей, специально разработанных для строительства жилых и инфраструктурных объектов в суровых условиях Крайнего Севера.<br>
<br>
Обученная на широком наборе данных цифровая модель способна не только предложить оптимальный состав бетона, учитывая особенности местных материалов, таких как щебень, песок и другие компоненты, качество которых может значительно варьироваться в зависимости от региона их происхождения, но и разработать подход, позволяющий устранить проблемы с их низким качеством. <br>
<br>
Бетон — это широко распространённый искусственный строительный материал, который получают в результате затвердевания специально подобранной смеси, в основе которой лежит вяжущее вещество, а также вода и различные добавки, которые позволяют варьировать состав и делать бетон более устойчивым к перепаду температур и механическому воздействию. Особые требования к бетону существуют в экстремальных условиях Российской Арктики, где от строительных материалов требуется максимальная морозостойкость. <br>
<br>
<i>"Наша работа посвящена исследованию оптимизации состава бетонной смеси для получения морозостойких бетонов, в частности, для строительства дорожных покрытий и взлётно-посадочных полос. Традиционный подход к разработке бетонных смесей предполагает, что состав подбирается „вручную“ — это затратно и требует значительного времени для оценки его стойкости в суровых условиях эксплуатации. Благодаря использованию специально обученного искусственного интеллекта можно существенно сократить процесс — сэкономить пару лет и материальные ресурсы"</i>, — рассказала соавтор исследования, заведующая испытательной лабораторией строительных материалов и химического анализа воды СФУ <b>Ирина Енджиевская</b>.<br>
<br>
По словам учёного, подбор материалов для бетона — сложный процесс, особенно тщательно следует подходить к фактору морозостойкости, ведь если на большей части Российской Федерации в ходу бетон, рассчитанный на 200 циклов в хлористых солях (F 150–200), то в условиях Крайнего Севера материал должен выдерживать 300 циклов эксплуатации. Сложность же заключается в том, что учёным сложно определить опытным путём, что именно в составе бетонов отвечает за повышение этой характеристики. <br>
<br>
<i>"Машинное обучение удивляет всё чаще. Созданная доцентом СФУ Максимом Молокеевым программа показала факторы, связанные с химическими процессами в бетоне, которые с высокой долей вероятности определяют, насколько этот состав будет морозоустойчивым и применимым, скажем, в Норильске для строительства взлётно-посадочной полосы аэродрома. Оказалось, что основную роль в этом случае играет качество и количество щебня и воздухововлекающие добавки. Причём если ранее считалось, что „лишний“ воздух однозначно уменьшает прочность бетона, то оказалось, что в определённых пределах он повышает не только стойкость к отрицательным температурам, но и меняет саму механику разрушения бетона с сохранением прочности. Этот факт был определён машинным интеллектом, и мы склонны согласиться с этим замечанием, поскольку уже проверили его на практике"</i>, — отметила Ирина Енджиевская. <br>
<br>
Морозостойкость — не единственное качество бетона, которым исследователи озадачили искусственный интеллект. Он также должен был потрудиться над тем, чтобы увеличить прочность материала на изгиб и при динамических воздействиях и выяснить, какова прогнозируемая стойкость к антигололёдным реагентам у бетонов, из которых изготавливают дорожное покрытие. <br>
<br>
Одно из преимуществ "рецептов" бетонных составов от машинной модели — адаптация под местные материалы, поскольку щебень, песок и прочие составляющие могут существенно варьироваться по физико-химическим свойствам в разных регионах страны, особенно проблемно их качество на труднодоступных территориях. Искусственный помощник подскажет, в какой пропорции следует использовать эти компоненты и как нивелировать их недостатки, чтобы в итоге получился тот самый бетон с заданными свойствами. <br>
<br>
Одной из ближайших задач, которые будут также решаться методами машинного обучения, является разработка оптимального состава бесцементного бетона. Такой материал будет выгодно отличаться своей экологичностью из-за уменьшения выбросов углекислого газа, кроме того, в нём будут использоваться активированные промышленные отходы — зола и нефелиновый шлам, образующийся при переработке редкоземельных руд. В случае успешной реализации новая технология бесцементного бетона позволит уменьшить площади уже существующих золоотвалов и сэкономить значительные средства, расходующиеся на их рекультивацию. Работы по созданию подобного материала уже ведутся специалистами СФУ совместно с партнёрами. <br>
<br>
<i>"Был разработан набор инструментов машинного обучения и их комбинаций, который представляет огромную практическую ценность для прогнозирования составов новых материалов. В процессе моделирования подбирается наилучшее сочетание, проводится анализ данных в выбранных областях и выводятся полезные рекомендации, включая „рецепты“ бетонов с требуемыми свойствами. Такая модель — ценный помощник для материаловедов, от неё вряд ли ускользнёт то, что порой теряется из-за ограничений человеческого опыта и времени. Её выводы, хотя и могут показаться неожиданными, имеют высочайшую ценность и должны быть проверены на практике. Модель может использоваться в том числе для поиска новых строительных бетонов, особенно в тяжёлых и экстремальных природных условиях Российской Арктики"</i>, — объяснил доцент Института инженерной физики и радиоэлектроники СФУ <b>Максим Молокеев</b>.<br>
<br>
Источник: <a target="_blank" href="https://research.sfu-kras.ru/news/27901"><span style="color: #00aeef;">Пресс-служба Сибирского федерального университета</span></a><br>
</div>
<p>
<br>
</p>